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Abstract. We present a methodology and a corresponding system to
bridge the gap between prioritization tools with fixed target and unre-
stricted semantic queries. We describe the advantages of an intermediate AQ1

level of networks of similarities and relevances: (1) it is derived from raw,
linked data (2) it ensures efficient inference over partial, inconsistent and
noisy cross-domain, cross-species linked open data, (3) preserved trans-
parency and decomposability of the inference allows semantic filters and
preferences to control and focus of the inference, (4) high-dimensional,
weakly significant evidences, such as overall summary statistics could
also be used in the inference, (5) quantitative and rank based inference
primitives can be defined, and (6) queries are unrestricted, e.g. priori-
tized variables, and (7) it allows wider access for non-technical experts. AQ2

We provide a step-by-step guide for the methodology using a macular
degeneration model, including drug, target and disease domains. The
system and the model presented in the paper are available at bioinfor-
matics.mit.bme.hu/QSF.

Keywords: Semantic web · Graph databases · Linked open data
Data and knowledge fusion · Recommender systems
Explanation generation

1 Introduction

Integration of cross-domain information has been targeted at different levels: at
the level of data, such as in the joint statistical analysis of cross-domain omic
datasets [1], at the level of knowledge, such as in the pharmaceutical integration
approaches using semantic web technologies [2–4], and even at the level of com-
putational services, such as in the scientific workflows [5,6]. However, significant
part of scientific knowledge is uncertain, weakly significant, poorly represented
and remains inaccessible for cross-domain integration, although the importance
c© Springer International Publishing AG, part of Springer Nature 2018
I. Rojas and F. Ortuño (Eds.): IWBBIO 2018, LNBI 10813, pp. 1–13, 2018.
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of the analysis and interpretation of such weak signs have already been recognized
in many standalone high-dimensional omic domains. This is illustrated by data
fusion in molecular similarity [7], kernel-based data and knowledge fusion [8],
cross-species gene prioritization [9], Bayesian fusion [10] and network boosted
analysis of genome-wide polymorphism data [11].

Semantic technologies, relying heavily on the Resource Description Frame-
work (RDF), provide an unprecedented basis for cross-domain data and knowl-
edge fusion, as demonstrated by the emergence of large-scale, unified knowledge
space in life sciences (the Life Sciences Linked Open Data Space, LSLODS,
see e.g. BIO2RDF [12], CHEM2BIO2RDF [13], Open PHACTS [3], integrated
WikiPathways [14], biochem4j [15], DisGeNET-RDF [16,17]). However, there are
serious limitations concerning its computational complexity of inference [18] and
practical IT accessibility [19], its inaccessibility for non-technical users [3,20,21].
Furthermore, most importantly, its ability to cope with uncertain facts, evi-
dences, and inference is still an open challenge (for representing uncertain scien-
tific knowledge, see e.g. HELO [22]; for combination of uncertain evidences, see
e.g. [10,23–25]).

To tackle these challenges, we propose the construction of an intermedi-
ate, quantitative knowledge level of structured similarities and we created a
corresponding system to demonstrate its advantages, the Quantitative Seman-
tic Fusion (QSF) system (Fig. 1). This approach is related to multiple earlier
approaches in fusion, such as (1) Linked Open Data (LOD) cubes to support com-
putationally efficient SPARQL queries [26], (2) knowledge graphs [27], (3) prob-
abilistic logic, Markov logic for semantic web integration inference and approx-
imation of inference in large-scale probabilistic graphical models [28], and (4)
relational generalization of kernel-based fusion [8,29].

We demonstrate the properties of this approach and the corresponding QSF
system using a specific model for macular degeneration.

2 The Quantitative Semantic Fusion Framework

The Quantitative Semantic Fusion (QSF) System is an extensible framework
that incorporates distinct annotated semantic types (also called: entities) and
links between them by integrating different data sources from the Linked Open
Data world. The QSF System then enables the users to quantitatively prioritize
a freely chosen entity based on evidences propagated from any other, possibly
multiple entities through the connecting links.

Currently, the system contains genes, taxa, diseases, phenotypes, disease cat-
egories (UMLS semantic types and MeSH disease classes), pathways, substances,
assays, cell lines and the targets of the compounds. Besides, associations between
genes and diseases are further described by related single nucleotide polymor-
phisms and the source of the association information. Links define associations
between entities. For example, genes and pathways are connected with a link
which represents gene-pathway associations. Certain links have additional anno-
tations which can be used for (1) weighting associations during similarity com-
putations and/or for (2) filtering links based on the annotation values. In order
to enable cross-species information fusion, we also added gene ortholog links.
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Constructing a Quantitative Fusion Layer over the Semantic Level 3

Fig. 1. Quantitative Semantic Fusion (QSF) System (I) The QSF System incorporates
distinct annotated semantic types (i.e. entities) and their quantitative pairwise rela-
tions (i.e. links) by integrating different data sources from the Linked Open Data world.
Predefined entities and links from DisGeNET [16], Ensembl [30], ChEMBL [31] and
WikiPathways [14] are shown in the top. Together entities and links form the structure
and parameters of the QSF System. (II) The user can freely construct so-called com-
putation graphs using the available entities and links and can select any entity as the
target of the prioritization. An example computation graph is shown in the middle.
Then, the user defines the (II.a) inference rules, sets (II.b) evidences of possibly mul-
tiple entities and (II.c) optionally sets filters on specific entities and links. The main
results of the prioritization are (III.a) the quantitative relevance scores for the target
entity and (III.b) the most dominant explanations of the prioritization results.
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4 A. Gezsi et al.

Furthermore, to be able to expand the evidences related to gene or substance
entities we enriched the system by adding gene-gene similarities based on Gene
Ontology semantic similarity using GOssTo [32] and substance-substance simi-
larities based on MACCS fingerprints computed by Tanimoto similarity.

The user can freely construct so-called computation graphs from the available
entities (used as nodes) and links (as edges). Entities can be reused in the graph,
i.e. multiple nodes in the graph can have the same semantic type. The user then
arbitrarily selects an entity to prioritize and gives evidences in other entities.

For example, given a selection of phenotypes related to a disease, together
with relevant drugs and substances in relevant clinical trials, and certain related
genes in model organisms, the user may want to prioritize human genes based
on all these evidences. The evidences propagate through the edges as similarity
calculations between the entity vector of the source node and the row entity vec-
tors of the linker matrix between the source and the target node. Seven different
similarity calculation methods were implemented which are Cosine similarity,
Dice and Overlap coefficients, Tanimoto similarity, and three kernel based simi-
larities: linear, polynomial and radial basis function kernels. The vectors can be
weighted by numeric annotations of the links, and information retrieval based
corrections can also be used. Default similarity calculations are suggested for
each link type based on internal tests and cross-validation, but the default cal-
culation mode can be overridden by the user. In case of a node that has more
than one incoming edges in the computation graph, the calculation of the scores
of the node can be given with a mathematical formula over the incoming edges.

3 A Simple Model for Age-Related Macular Degeneration

To illustrate the methodology and the QSF system, a simple model was set up
using age-related macular degeneration (AMD) as an example. In this case, the
disease database contains 21 AMD subtypes or related diseases, but only one
of them (URI: http://linkedlifedata.com/resource/umls/id/C0242383) contains
relevant genetic information (including 391 genes). To expand the genetic infor-
mation, the GWAS catalog [33] with 131 hits for AMD were used for human
genetic source, and 72 rat genes from RGD (Rat Genome Database) and 42
mouse genes from MGD (Mouse Genome Database) [34] were used for ortholog
genes, representing the two most common animal modes for AMD. For chemi-
cal information, a currently used AMD drug and over 30 drug candidates from
clinical AMD trials were used, taken from DrugBank [35]. For pathways three
complement and angiogenesis-related pathways were identified in the literature
as underlying mechanisms.

4 Phases of the Methodology

The main phases of the methodology starting from deriving relations from RDF
resources to visualization of the most relevant proofs for an inference are as
follows:

1. Resource and model overview: Overview the modeled phenomena and the
available relevant resources and their connections.
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2. Model structure: Design entities and their relations.
3. Model parameters: Derive parameters for the planned relations using

SPARQL queries or direct RDF conversion.
4. Inference rules: Specify the inference rules for the propagation and combina-

tion of evidences, especially in multiply connected structures (with loops).
5. Evidences: Construct hard (logical) and soft (weighted) evidences.
6. Dynamic knowledge base: Define the active parts of the knowledge base,

e.g. by selecting relevant model organisms and resources, and analogously
disable certain parts of the knowledge base by semantic filtering.

7. Inference: Perform off-line inference using a computational cluster.
8. Results: Export prioritization and scoring results for targets: e.g. for external

enrichment analysis.
9. Explanations: Export the most relevant explanations visualized as graphs.

10. Sensitivity analysis: Check the sensitivity of the results for settings.

The graphical user interface (GUI) of the QSF framework can be used for
answering a large number of various questions using the predefined computation
graphs. Furthermore, the development of the system allows further integration of
new databases and the computation graph of the evidence propagation is easily
customizable. To support non-technical users, the GUI contains prepared compu-
tation graphs, which are capable of handling typical questions and demonstrating
functionalities. The presented computation graph is a simple tree-based fusion
model over genes, diseases, phenotypes, pathways, targets (proteins) and sub-
stances. We use this model to demonstrate and explain the QSF phases (Fig. 2).

Fig. 2. A simple computation graph for macular degeneration in the QSF system.
Blue, green and yellow denote the inputs, the filters and the outputs, respectively.
(Color figure online)

4.1 Resource and Model Overview

The first step is the overview of the relevant information sources for the modeled
phenomena collecting information for the involved phenotypes, genes, drugs and
pathways (resources for macular degeneration are presented in Sect. 3).
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4.2 Model Structure, Parameters, and Inference Rules

The second step starts with the construction of the computation graph, which
contains the input nodes and the paths with possible filtering nodes. For the
AMD model, the inputs and the target determine the computation graph (Fig. 2),
but the framework can handle arbitrary graphs for complex models.

Remark: The building blocks for the computation graph are the nodes and the
edges connecting them (Fig. 1).

Example: If a set of genes and substances are the available inputs and the ques-
tion is about the pathways involved, then by clicking on the Gene and Sub-
stance Input Nodes and by selecting the Pathway Node as ’Prioritization
target’ (see later in Subsect. 4.5) the relevant parts (i.e. paths connecting the
corresponding nodes) of the predefined computation graph will be automat-
ically selected and the Gene and Target Filter nodes will be automatically
added to the final computation graph.

4.3 Adding Input Evidences

The framework can incorporate three types of inputs: (1) constraint information
or list of entities without any weight, (2) evidence information or a list of enti-
ties with corresponding weights or evidences and (3) conditional input or filter
parameters on a node choosing all the entities where the condition applies.

Remark: The QSF approximates Bayesian information propagation therefore
for quantitative results the inputs are required to represent probabilities,
although using any other kind of weights are allowed and will result in mean-
ingful prioritization values, but the quantitative interpretation is more prob-
lematic.

Example: If the inputs are the drugs of running trials for a given disease, then
the inputs can be added manually by clicking on ’Add constraint’ or ’Add
evidence’, and the IDs will be shown in a list for each node (see Fig. 3B).

Converting IDs: The GUI allows to choose entities one by one for any node
by name or ID, but for a larger number of values using lists and list of IDs
is suggested. For genes Ensemble IDs, for diseases UMLS IDs, for phenotypes
HPO IDs, for pathways WikiPathways IDs and for protein targets and substances
ChEMBL IDs are used. Using these IDs, a large amount of input can be entered
into the model, therefore converting data from diverse origin to the presented
IDs is highly recommended, in order to utilize a maximum amount of data.

Defining soft evidences: Quantitative evidences are values of weights for each
input entity representing relevance. It can be any numeric value, but optimally
they are values between 0 and 1 representing the probability of the input.
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Fig. 3. GUI interface for inputs and filters: (A) Choosing prioritization target (B)
Choosing a node and providing manual constraints and evidences (C) Giving con-
straints and evidences using lists (D) Adding filters and specifying filter conditions

Using lists: For a larger number of inputs, usage of an input list is suggested.
For example, if the drug trials for macular degeneration disease are considered
as input, then by converting these drug names into ChEMBL, IDs can be added
by separating them by commas. Quantitative (soft) evidences can also be used;
the format is similar, but for each drug a certainty or relevance weight can
be specified by an equality sign, where the number that follows is preferably
a probability (Fig. 3C). In this case, the trial phase (0, I–IV) is known for the
drugs and the probabilities could be approximated by the acceptance rate of
ophthalmology trials, which are 0.17 for phases 0 and I, 0.2 for phase II, 0.45 for
phase III [36].

Conditional inputs: Inputs can also be specified by using statements for any
parameter of a given input node. Example statements are the following: for a
disease node: the title contains the term “macular degeneration”; for a gene node:
the chromosome number is 5; for a substance node: the title (or chemical name)
contains a name (Fig. 3D) or a specific structure (like “Cyclopropyl-6-fluoro”
and “carboxylic acid”).

4.4 Adding Filters

The semantic control over the inference, e.g. filtering out gene-diseases interac-
tions purely based on keywords, is a novel function, which is completely miss-
ing from currently prevailing monolithic gene prioritization systems. Further
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improvements could be achieved by filtering out the less reliable links, e.g. the
weak substance-target interactions, although the selection of threshold values
for filtering is an open issue in our fusion methodology as well.

Remark: The filtering method is the same for input and filter nodes (Fig. 3D),
except that if there is a filter statement in an input node (without par-
ents), then it includes all the entities matching the statement and in case
of any intermediate or filter node, it excludes all the entities from further
propagation.

Example: In case of macular degeneration wide range of sources contain data
about low vision in general, therefore filtering out common factors causing
low vision like cataract can improve the quality of the inputs. Additionally,
filtering on the Target-Substance edge also allows excluding chemicals with
low affinity to the target by sorting out the weak associations where the
pChembl (−log(IC50 or Ki)) is below a certain number.

4.5 Determining Outputs and Visualization

The next step is to define a target for the prioritization. It determines the type
of the output and the path(s) of the propagation.

Remark: The ‘Prioritization target’ determines the path(s) of the information
propagation in the graph; therefore it is an interpretation or an aspect of the
model.

Example: For example, if the question is which diseases are involved in a biologi-
cal setup, by clicking on the disease, that node is chosen for the prioritization
target. It can be changed later by choosing the target from the list of the
involved nodes (Figs. 2 and 3A).

The GUI supports interpretation using a simple tabular result prioritization and
a graphical visualization.

Example: The macular degeneration model uses the known macular
degeneration-related pathways, human and model animal genes, drugs and
their known targets. Choosing a disease node as the prioritization target,
the results (Fig. 4) and the contribution of the individual inputs (Fig. 5) are
informative for evaluating the model.

Prioritization: The results contain entity identifiers, a numeric value represent-
ing the relevance of each entity and further descriptive parameters (Fig. 4).

Tabular view of prioritization: The matrix view plots parallel results in columns
corresponding to all the inputs and for each individual input node. This tech-
nique supports the understanding of the contributions of the inputs and their
redundancy, complementarity. The color scheme helps the visual tracking of the
entities ranked differently by various inputs (Fig. 5).
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Fig. 4. A result of disease prioritization in the macular degeneration model.

Fig. 5. The result of the disease prioritization using all macular degeneration-related
inputs (leftmost column) and the contribution of the individual inputs (other columns).

Explanation visualization: To visualize the most relevant paths (i.e. the expla-
nations) between the input nodes and the target node an explanation graph is
exported into Cytoscape. The graph can be processed further using the add-ons
and resources developed by the broad community of Cytoscape (Fig. 6).

4.6 Checking Robustness of the Results

Currently, we are implementing methods to support the comparison of results
under different settings, e.g. using various inference rules, evidence weighting or
semantic filtering. For example, our preliminary evaluation for the disease axis
using the AMD model suggests the use of Tanimoto similarity for narrow queries
and cosine similarity for broader queries with heterogeneous, soft evidences, e.g.
for data analytic evidences.
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Fig. 6. Explanation graphs: (A) The association between a disease and a pathway
can be determined by numerous genes (B) Graph representation of the most relevant
explanation between pathways (green) and diseases (blue) trough genes (magenta)
(Color figure online)

5 Conclusion

The availability of voluminous and heterogeneous semantically linked open data
and knowledge provides an unprecedented opportunity for cross-domain fusion.
However, uncertainty over the measurements and knowledge fragments, and also
over the evidences poses a fundamental challenge for the practical use of these
resources in research and development. We proposed an intermediate level of
data and knowledge to cope with high-dimensional uncertainty, at which level
quantitative relevances can be propagated through similarities and the infer-
ence process can also be semantically controlled and focused. Currently, we are
evaluating the quantitative performance of the QSF system in prioritization
tasks.
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