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Abstract- The complex or multifactorial diseases are those 
which develop through interactions of often hundreds of 
genes and environmental factors. The complex diseases 
like cancer, asthma, hypertension, diabetes mellitus, 
cardiovascular diseases or Alzheimer disease are often 
very frequent, it can even be said that more or less 
everybody is affected by some of them. In this review it is 
discussed why it is important to study the genomic 
background of the complex diseases and the main 
genomic methods are summarized. Next, the difficulties of 
these studies are shown and discussed what the reason of 
the missing heritability of the complex diseases can be. In 
the end some developments are shown which try to cope 
with these problems. 
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I. INTRODUCTION 

The complex or multifactorial diseases are those which 
develop through interactions of a few (oligogenic) or several 
(polygenic) genes and the environmental factors. The 
complex diseases, in contrast to the monogenic diseases, 
which affect only a small fraction of the population, are often 
very frequent, it can even be said that more or less everybody 
is affected by them. Complex diseases are the endemic, non-
communicable diseases, or NCD, which are non-infectious 
and non-transmissible between persons, like cancer, asthma, 
hypertension, diabetes mellitus, cardiovascular diseases and 
Alzheimer disease, etc.  
First, one can ask, why it is important to study the genomic 
background of the complex diseases? Perhaps the most 
important is that it helps to explore the molecular 
pathomechanism. In contrast to the traditional methods, the 
genomic methods are often hypothesis free, i.e. they do not 
require any knowledge about the pathogenesis. In this way 
novel pathways and mechanisms can be detected, which can 
offer new drug targets or new therapies. Otherwise, the 
genomic studies can reveal the genetic differences between 
people, offering novel possibilities for personal therapies, and 
connections can be found between the success of the therapy 
and the genetic background. Genomic studies can reveal 
genetic variations which influence the risk of developing a 
disease. In this way, right after the birth the genomic 
background and the risk to different diseases of a new-born 
can be determined, which offers the possibilities to change 
from “diagnose and treat” to “predict and prevent”.  Earlier it 

was regarded as the most important task of the medical 
genomics, but later it turned out that in most cases the sum 
risk to a multifactorial disease is so complex that it is usually 
impossible to give a clinically relevant estimation. 
As for both researchers and the whole society the significance 
of genomic results are widespread appreciated, this has led to 
a large-scale effort for the development of genomic methods 
and huge breakthroughs have been achieved. 

II.  GENOMIC STUDIES 

A. Genetic markers 
A genetic marker is usually a sequence variation with a 
known location on a chromosome that can be used to identify 
individuals, with a relative high chance to differentiate 
between different alleles on homologous chromosomes. 
Genetic markers can be used to study the relationship 
between an inherited disease and its genetic cause (for 
example, a particular mutation of a gene that results in a 
defective protein). It is known that pieces of DNA that lie 
near each other on a chromosome tend to be inherited 
together (they are linked). This property enables the use of a 
marker, which can then be used to determine the precise 
inheritance pattern of the gene that has not yet been exactly 
localized. Genetic markers have to be easily identifiable, 
associated with a specific locus, and highly polymorphic, 
because homozygotes do not provide any information.  
One of the most popular markers are the microsatellites, or 
simple sequence repeats (SSRs) or short tandem repeats 
(STRs), are repeating sequences of 2-6 base pairs of DNA. 
Often they are very polymorphic, meaning that individuals 
are often heterozygotic to them, which means that they differ 
in the number of repeats.  
They are widely used in mapping disease genes or 
differentiate between individuals. The human genome is now 
mapped by approximately 30,000 highly polymorphic 
microsatellites. The average length of linkage disequilibrium 
(LD) for microsatellites is ~100 kb, which is considerably 
higher than that of SNPs. Therefore, a single microsatellite 
captures a larger genomic region than does a single SNP. 
Microsatellites also provide several other advantages, such as 
a higher information content (6–10 alleles as compared with 
2 alleles for SNPs), and a smaller interpopulation variability. 
Most existing forensic DNA databases are STR-based. It has 
been demonstrated that 20–50 ascertained autosomal SNPs 
could reach match probabilities similar to those obtained with 
10–15 forensically used STRs.  
But the disadvantages of the STRs are that the detection 
methods are quite complicated relative to those of the SNPs, 



they are much rarer than SNPs, and their mutation rates are 
100,000 times higher. 
Nowadays, the advantages of the SNPs are much more 
significant, and mainly because of their number and simple 
detection techniques, they will replace STRs in most areas. 
E.g. forty-five unlinked autosomal SNPs were ascertained by 
screening more than 500 candidate SNPs in 44 worldwide 
populations. These 45 ascertained SNPs have high levels of 
heterozygosity and low levels of population differentiation 
and are therefore suitable for universal human identification 
purposes. Multiplex genotyping assays for these SNPs have 
been developed. 
 

B. Study of genetic variants 
Genetic variations play important roles in disease 
susceptibilities, differences between individuals or in 
responses to drugs, and the study of them is important in 
discovery of novel drug targets, personal therapies or 
pharmacogenetics, etc. The HGP and the subsequent different 
genome projects (Human Variome Project, HapMap, 1000 
Genome project, etc.) detected millions of genetic variants 
[1,2]. Presently, there are more than 65 million short variants, 
and more than 10 million structural variants in the databases. 
The simplest method for the study of the genetic background 
of a disease is the candidate gene association study. In these 
studies genes are selected, which are thought to play a role in 
the disease. Then, genetic variations are searched in these 
genes. Earlier the genes were sequenced in several 
individuals, now the databases contain practically all the 
common variants. The first one is often called wet laboratory 
method, the latter one in silico method. Then, the selected 
variants are genotyped, and their frequencies are compared in 
the population with and without the studied trait (disease). If 
the frequencies of the variants differ in a statistically 
significant way between the two populations, then they are 
suspected to play a role in the disease susceptibility. Several 
10 thousand such investigations have been carried out in the 
last decades in different diseases. But, there were a lot of 
problems with these studies. One of the problems is the 
multiple testing problems, but in a different way than 
discussed in connection with GWAS (s. later). Because here, 
the same variants have been tested in different laboratories, 
and naturally only the positive results have been published; 
the negative ones have been discarded. And, if 100 
laboratories study the same variants, there is a chance that 
one of them gets a positive association purely by chance. This 
is called publication bias. Because of this, hundreds of false 
positive results (and genes) have been published.  
The other problem is that with this methods only those genes 
can be studied whose role was already known in the disease, 
and in this way no new mechanism could be detected.  
The hypothesis-free genomic methods theoretically could 
solve this last problem. First, whole genome screenings were 
developed and carried out in several diseases. In this method 
families were screened with microsatellites. Those families 
were recruited where there were at least two affected siblings. 
These studies are also called affected sib pair (ASP) studies, 

or linkage studies. Here LOD scores were calculated. The 
LOD score (logarithm (base 10) of odds) is a statistical test 
often used for linkage analysis. The LOD score compares the 
likelihood of obtaining the test data if the two loci, or the 
disease phenotype and a locus are indeed linked, to the 
likelihood of observing the same data purely by chance. 
Positive LOD scores favor the presence of linkage, whereas 
negative LOD scores indicate that linkage is less likely. A 
LOD score greater than 3.0 is considered evidence for linkage. 
A LOD score of +3 indicates 1000 to 1 odds that the linkage 
being observed did not occur by chance. On the other hand, a 
LOD score of less than -2.0 is considered evidence to exclude 
linkage. 
The method has given a lot of interesting results, but there 
have been several problems with it. First, it is difficult to 
collect families with two affected siblings, second, the 
genotyping of the microsatellies are very cumbersome and 
expensive. Because of this latter, the number of 
microsatellites in the studies was limited (usually not more 
than 400), thus the resolution was very low. This means that 
it was a great chance that disease associated loci, which were 
not in linkage with any of the microsatellites were lost. In 
addition, these studies could determine only genomic regions 
(because of the limited number of markers), and not genes. 
And often, these regions are large, several megabase long and 
contain several hundreds of genes. In this way, additional 
methods are needed for the determination of the genes.  
 

C. GWAS 
Presently, the most popular method for the study of the 
genomic background of complex diseases and traits is called 
GWAS (genome-wide association study), also known as 
whole genome association study (WGA study or WGAS). 
The method has become possible, when arrays and chips have 
been developed with which first 100 thousand, then several 
million SNP could be genotyped in one measurement, and the 
price of one chip has become relatively cheap, i.e. about $100. 
First, only SNPs were determined, later, when the 
significance of CNVs became apparent, they were involved 
as well. The CNVs were determined through their known 
linkage with SNPs. In 2007 this method was selected for the 
breakthrough of the year. 
There are two main companies in the markets, Affymetrix 
and Illumina. The Affymetrix Genome-Wide Human SNP 
Array 6.0 features 1.8 million genetic markers, including 
more than 906,600 SNPs and more than 946,000 probes for 
the detection of CNVs.  
The Illumina HumanOmni5-Quad (Omni5) BeadChip can 
detect 4.3 million tagSNPs selected from the International 
HapMap and 1000 Genomes Projects that target genetic 
variation down to 1% minor allele frequency (MAF). 
In GWAS the distribution (frequencies) of the variants is 
compared in the different populations; usually one of them is 
affected with the trait, the other is not. But, with the 
development of the statistical methods GWAS has become 
capable of studying the genomic background of continuous 



traits (like fasting glucose levels or blood pressure) as well. 
In this latter case there are no different groups.  
GWAS has been offering a great chance for the investigation 
of the genomic background of the diseases, which have been 
utilized by a lot of research groups and consortia. Because of 
the strict statistical conditions and the large investigated 
populations, the results of GWAS may contain only few false 
results; and because this is a hypothesis-free method, there is 
a possibility that it reveals new aspects of the disease. To 
make these important results public, a web page was 
established on 25 November 2008 (A Catalog of Published 
Genome-Wide Association Studies) [3], and it includes only 
those publications which investigate at least 100,000 SNPs in 
the initial stage. Publications are organized from most to least 
recent date of publication, indexing from online publication if 
available. Studies focusing only on candidate genes are 
excluded from this catalog. Studies are identified through 
weekly PubMed literature searches, daily NIH-distributed 
compilations of news and media reports, and occasional 
comparisons with an existing database of GWAS. SNP-trait 
associations listed here are limited to those with p-values < 
1.0 × 10-5. In 2013 the catalog contained about 1,800 curated 
publications of 12,000 SNPs [4]. In March 2015, the GWAS 
Catalog infrastructure was migrating to the European 
Bioinformatics Institute (EMBL-EBI). 
 

D. Evaluation of GWAS results 
The evaluation and handling of GWAS data are a great 
challenge for the bioinformaticians. One of the main 
problems is the multiple testing problem. If the p value of a 
SNP corresponds to the Bonferroni corrected value, then it is 
said that it reached the level of genome wide significance. It 
is, e.g. in case of 1 million SNPs 5 × 10-8. As the main 
characteristics of the complex diseases are variants with weak 
effects, this low p value often can only be achieved through 
involving large populations. Often the number of participants 
must be >100,000, which is very difficult and expensive to 
collect, and which is in case of rarer diseases even impossible. 
Because of this, GWAS are often carried out by large 
international consortia. 
A method to attenuate this problem can be, if several smaller 
populations are investigated independently. In this way the p 
values in the independent studies for each SNP are multiplied, 
and it is easier to achieve the low values (e.g. 10-3 × 10-3 = 10-

6). Usually, a discovery GWAS is carried out in a smaller 
population (discovery cohort). Then, SNPs are selected with a 
not so strict p value (e.g. cut off value < 5× 10-2), then several 
independent populations are collected (replication cohorts), 
and only the selected SNPs are studied. The SNPs which are 
confirmed in the replication cohorts can be those which are 
associated with the disease. 
New statistical methods are also under development, such as 
Bayesian statistics and pathway analysis. For this latter, 
several databases are available like Gene Ontology (GO) [5] 
or KEGG (Kyoto Encyclopedia of Genes and Genomes [6].  
   Gene Set Enrichment Analysis (GSEA) is a computational 
method, which was originally developed for gene expression 

studies and can be applied in GWAS as well. This determines 
whether different a priori defined sets of genes show 
statistically significant, concordant differences between two 
biological states (e.g. phenotypes). Then the sets of genes are 
ranked according to their associations. 
With these methods several new disease associated pathways 
have been detected. 
 

E. DNA sequencing 
DNA sequencing is the process of reading the nucleotide 
bases in a DNA molecule. Since the beginning of the HGP it 
has been developing continuously. In HGP the DNA was 
sequenced with Sanger method, i.e. with dideoxy or chain 
termination sequencing. In 2001 the sequencing of one 
human genome took a minimum of 1 year. It was obvious 
that both the price and the time were not appropriate for 
routine investigations, or even for sequencing several human 
genomes. It became clear that the Sanger method could not 
be developed much further to become much cheaper and 
faster. But it was also obvious that much cheaper and faster 
sequencing would have an immense leap in pharmaceutical 
research, personal medicine, but it could be used for 
countless aims. The high demand for low-cost sequencing has 
driven the development of high-throughput sequencing (also 
called as next-generation sequencing, or NGS) technologies 
that parallelize the sequencing process, producing thousands 
or millions of sequences at once. The methods were so 
successful that in 2007 the new generation sequencing (NGS) 
became the method of the year [7] in Nature Methods 
magazine. In 2007 the genome of James Watson was 
sequence with the 454 technology in 2 months and for $1 
million. It was still far away from the aim, but it was a big 
step ahead. Since then, the price has been lower and lower, 
and the time shorter and shorter (Figure 2). E.g. in June 2009, 
Illumina announced that they were launching their own 
Personal Full Genome Sequencing Service at a depth of 30× 
for US $48,000 per genome. 
In November 2009, Complete Genomics published a peer-
reviewed paper in Science demonstrating its ability to 
sequence a complete human genome for US$1,700. If true, 
this would mean the cost of full genome sequencing has come 
down exponentially within just a single year from around 
US$100,000 to US$50,000 and now to US$1,700.  

In 2011 Complete Genomics charges approximately 
US$10,000 to sequence a complete human genome (less for 
large orders). 
In May 2011, Illumina lowered its Full Genome Sequencing 
service to US$5,000 per human genome, or US$4,000 if 
ordering 50 or more. 
In January 2012, Life Technologies introduced a sequencer to 
decode a human genome in one day for $1,000 and now 
several examples of other equipment are also capable for this. 
 

F. Difficulties in the studies of the genomic 
background of complex diseases 

At the beginning of the genomic era, even right after the 
completion of the HGP, it was generally thought that 



genomic would revolutionize the medicine, and in a few 
years the era of personal therapy would come. But now we 
know that it did not come true, and even it would not in the 
next years. What can be the reason for this?  
According to the general opinion, one of the main reasons for 
this failure is due to the very complex regulation of the 
genome, and the multifactorial nature of the diseases and 
traits. In Table 1 there are some characteristics which make 
the determination of the genetic background of the 
multifactorial diseases difficult.  
 
Table 1 Factors, which make the determination of the genetic backgrounds 
of the complex diseases difficult 
 

Problems Explanation 
Genetic heterogeneity Different allelic combinations lead to 

similar phenotypes. 
Phenocopy Environmental factors lead to the same 

clinical phenotype as do the genetic 
factors. In other words, the 
environmental condition mimics the 
phenotype produced by a gene. 

Pleiotropy The genetic variation can lead to 
different phenotypes. 

Incomplete penetrance Some individuals fail to express the 
trait, even though they carry the trait 
associated alleles. 

The exact diagnosis is difficult 
 

Often in complex diseases there are no 
standard diagnoses. There are subtypes 
of the diseases that cannot be 
differentiated with standard methods. 
The symptoms can change with the 
time, or manifest in episodes. Different 
diseases with similar symptoms. 
Concordance of different diseases. 

 
 
As for both researchers and the whole society the significance 
of genomic results are widespread appreciated, this has led to 
a large-scale effort for the development of genomic methods 
and huge breakthroughs have been achieved. 
But there is no reason for the total satisfaction, since most of 
the aims have not been achieved. In 2009, Manolio et al. 
published a widespread cited table in a paper, which 
summarizes the results of studies aiming at determining the 
genomic background of multifactorial diseases and traits [8]. 
These results show that the GWAS, which were thought to be 
the very method for determining the genomic background of 
complex traits, could determine only a small fraction of the 
heritability proportion of the majority of the traits. It means 
that most variants identified until then conferred relatively 
small increments in risk, and explained only a small 
proportion of familial clustering, leading many to question 
how the remaining, 'missing' heritability can be explained. 
And the situation has not improved considerably since then. 
E.g. height is one of the QTs which is easy to determine, and 
it is known that the heritability of it is about 80%. In several 
studies, large populations were collected and several GWAS 
were carried out. In one study, 44 loci were determined, 
which were responsible only for 5% of the heritability. Later, 
180 loci could be determined, but they were still responsible 

only for 10% of the heritability. This is true for the majority 
of the diseases. E.g. this value for T2DM is 6%, for fasting 
glucose level is 1.5%, for early myocardial infarction is 2.8%. 
The exceptions are diseases, where there are only a couple of 
mutations with strong impact, like in the case of macular 
degeneration. In contrast, the determination of the genetic 
background of monogenic diseases is a great success; it has 
been clarified for about 4000 such diseases so far. 
What can be the reason for this situation, which is often 
called the dark matter of heritability? Previously, some 
explanations have been already mentioned and below some 
additional ones will be given. 
 

G. Problems of the rare variants 
GWAS work with pre-made chips, which could determine 
known variations with a population frequency of >5% (MAF 
= minor allele frequency). There is a theory named common 
disease - common variants or CD/CV, which says that 
common diseases are caused by several common (frequent) 
variants with weak effects. The weak effects of these variants 
are accumulated causing higher susceptibility to a disease. If 
the environmental factors are unfavourable, then the disease 
can develop. It proved to be true for a lot of traits, like 
Alzheimer disease, where the roles of the common apoE4 
variants or the obesity where the roles of variations in the 
FTO genes were verified. But, there are also proofs for the 
so-called common disease rare variants hypothesis (CD/RV), 
which states that the common diseases are caused by rare 
variants with strong effects [9]. Example is the breast cancer 
where thousands of rare variants with strong effects have 
been found. The rare variants cannot be determined with 
GWAS, and the traditional statistical methods are not suitable 
for their detection. It is suggested that even in diseases, where 
common variations are known, there are also rare variations 
with strong effect. 
The rare variants can also cause another statistical problem 
called synthetic associations. In this case rare variants at the 
locus create multiple independent association signals 
captured by common tagging SNPs causing that variants 
which do not participate in the given phenotype, will be 
falsely named. 
 

H. The random behavior of the genome 
In September 2010 researchers published in Nature that 
genetic circuits that regulate cellular functions are subject to 
stochastic fluctuations, or ‘noise’, in the levels of their 
components [10]. It means that the behavior of the genome is 
sometimes random and thus cannot be predicted in 100%. It 
means that it is theoretically impossible even with more 
developed genomic and informatic methods to exactly 
forecast the future traits (phenotypes) of a newborn. 
 

I. Statistical problems 
The next problem originates from the evaluation methods, i.e. 
from the statistics. The most variations associated with 
increased risk to complex diseases, increase the risk with only 
10-20%. It means that the chance in the carriers for the 



development of the disease is only 1.1-1.2 times higher than 
in non-carriers. Detecting variations with such weak effects is 
very difficult. In addition, as the population is genetically 
heterogeneous, and interactions between these variants are 
needed, the possible number of genetic backgrounds 
associated with increased risk is practically infinite. In 
statistical point of view it is advantageous if the population is 
larger, but the larger population is genetically more 
heterogeneous, thus the effect of each genetic variant is 
diluted, becoming less significant and may be lost. 
The other problem is the lack of proper statistical methods. 
One problem is called the multiple testing problem.  
If in a GWAS 100 thousand genetic variations are measured, 
in a statistical point of view it means that 100 thousand 
independent measurements are carried out. In this case the 
probabilities of the false results are summed up. In statistics, 
p < 0.05 is used as a significance threshold. It means that the 
probability of the false statement is 5% (we can make a false 
statement 5 times in 100 independent investigations). One of 
the methods to correct this is called Bonferroni correction. In 
this case, 0.05 is divided by the number of the measurements 
(in this case with 100 thousand; p = 0.05/100.000 = 5×10-7). 
But the number of the independent investigations depends not 
only on the number of the measurements, but on several other 
factors, like the number of the samples, the clinical 
parameters and the type of tests, etc. But the Bonferroni 
correction is too conservative, i.e. if the correction is applied, 
only the strongest effects can be detected. In contrast, 
according to the CD/CV hypothesis the complex diseases 
develop through interactions between multiple genetic 
variants with weak effects and the environment. In addition, 
as the genetic factors interact with each other, if we want to 
calculate this interaction as well, it would increase the 
number of independent questions to a very large number. It 
means that the Bonferroni corrections and the similar other 
methods are not capable of detecting the variants of weak 
effects, i.e. other methods are needed. 
 

J. Possible solutions 
There are several developments which try to cope with the 
above mentioned problems. E.g. utilizing the results of the 
1000 Genome Project, new chips are under development, 
which can measure rarer (MAF < 0.05) variants as well (e.g. 
Illumina 5M chip). Furthermore, next to genotyping based 
methods, the new generation sequencing (NGS) may be soon 
suitable for population based studies. With the NGS, all type 
of variations can be detected. It must be added, however, that 
the statistical problems are even larger with this method, 
since it can give terabit size of data and hundreds of 
thousands of variations, many of which can be sequencing 
mistakes, or unknown variations whose functional 
characterizations are immensely difficult. 
There are a couple of new solutions for the statistical 
problems as well. E.g. to overcome several of the limitations, 
probabilistic graphical models (PGMs) were proposed. 
Thanks to their ability to efficiently and accurately represent 
complex networks, PGMs represent powerful tools to dissect 

the genetic susceptibility of complex diseases. Bayesian 
networks are a popular class of PGMs, its graphical 
representation presents a crucial advantage and is able to 
efficiently deal with SNP–SNP interactions impacting the 
phenotype, a situation that is called epistasis. As Bayes 
statistics can evaluate networks, it is a suitable evaluation 
method for systems biology [11-13]. 
It is assumed that with better statistics significantly more 
information can be extracted even from the present results. 
E.g. in a paper it has been stated that from the old results but 
with better statistics they could explain 67% of the 
heritability of height, in contrast the 5% in the original paper. 
In this paper rather than considering SNPs one by one, the 
new statistical analysis considers what effect all the SNPs 
together have on height [14]. 
In another paper the genetic background of hypertension was 
studied. They reevaluated the results of a metaanalysis of 
several GWAS, which did not find any associated variants 
(owing to the too conservative Bonferroni correction, and the 
heterogeneous nature of this disease). In the new statistics the 
authors did not consider individual SNPs, but examined 
whether there are pathways where the distribution of the 
variations are statistically different in the hypertensive 
population relative to the controls. In this paper several 
pathways were found associated with the disease [15]. 
It is also a great challenge that the majority (~93%) of 
disease- and trait-associated variants emerging from these 
studies lie within non-coding sequence. It is therefore very 
difficult to explain how these variants influence the trait. In a 
study of the ENCODE project it was found that in a given 
cell line, 76.6% of all non-coding GWAS SNPs either lie 
within a DNase I hypersensitive site (DHS) (57.1% or 2931 
SNPs), or are in complete linkage disequilibrium (LD) with 
SNPs in a nearby DHS [16]. DHSs show remarkable 
concordance with experimentally determined and 
computationally predicted binding sites of transcription 
factors and enhancers. With the help of the results of the 
ENCODE and similar other projects it will be much easier to 
determine the function of a variant lying in non-coding region 
of the genome. 
 

ACKNOWLEDGMENT 

This study was supported by OTKA (Hungarian Scientific Research 
Fund): K112872 

CONFLICT OF INTEREST 

The author declares that he has no conflict of interest. 
 

REFERENCES 

1. Venter JC, Adams MD, Myeers EW et al (2001) The sequence of the 
Human Genome. Science 291:1304-51 



2. International Human Genome Sequencing Consortium (2004) Finishing 
the euchromatic sequence of the human genome Nature 431: 931 - 945 
3. http://www.genome.gov/gwastudies/ 
4.  Welter D, MacArthur J, Morales J et al. (2014) The NHGRI GWAS 
Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res 42 
(Database issue):D1001-6 
5. http://www.geneontology.org 
6. http://www.genome.jp/kegg/ 
7. http://www.nature.com/nmeth/journal/v5/n1/full/nmeth1157.html 
8. Manolio TA, Collins FS, Cox NJ, et al. (2009) Finding the missing 
heritability of complex diseases. Nature  461(7265):747-53  
9. McClellan J, King MC (2010) Genetic heterogeneity in human disease. 
Cell 141(2):210-7. 
10. Eldar A, Elowitz MB (2010) Functional roles for noise in genetic 
circuits. Nature 467(7312):167-73. 
11. Ungvári I, Hullám G, Antal P et al. (2012) Evaluation of a partial 
genome screening of two asthma susceptibility regions using Bayesian 
network based Bayesian multilevel analysis of relevance. PLoS One 
7(3):e33573.  
12. Lautner-Csorba O, Gézsi A, Semsei AF, et al. (2012) Candidate gene 
association study in pediatric acute lymphoblastic leukemia evaluated by 

Bayesian network based Bayesian multilevel analysis of relevance. BMC 
Med Genomics 5(1):42.  
13. Lautner-Csorba O, Gézsi A, Erdélyi DJ et al. (2013) Roles of genetic 
polymorphisms in the folate pathway in childhood acute lymphoblastic 
leukemia evaluated by bayesian relevance and effect size analysis. PLoS One. 
8(8):e69843.  
14. Yang J, Benyamin B, McEvoy BP et al. (2010) Common SNPs explain 
a large proportion of the heritability for human height. Nat Genet 42(7):565-
9. 
15. Torkamani A, Topol EJ, Schork NJ (2008) Pathway analysis of seven 
common diseases assessed by genome-wide association. Genomics 
92(5):265-72.  
16. ENCODE Project Consortium (2012) An integrated encyclopedia of 
DNA elements in the human genome. Nature 489(7414):57-74. 

 
Author: Csaba Szalai 
Institute: Semmelweis University, Department of Genetics, Cell and 
Immunobiology 
Street: Nagyvárad tér 4. 
City: Budapest 
Country: Hungary 
Email: szalaics@gmail.com

 
 


